DR. S.S.BHATNAGAR UNIVERSITY INSTITUTE OF CHEMICAL ENGINEERING AND TECHNOLOGY PANJAB UNIVERSITY CHANDIGARH

M.E. CHEMICAL $1^{\text {ST }}$ YEAR

DATE:20.01.22

SUBJECT: TRANSPORT PHENOMENA

TIME: 60 MIN

Q1. A cylindrical rod of diameter κ R moves axially with velocity v_{0} along the axis of a cylindrical cavity of radius R . The pressure at both ends of the cavity is the same, so that the fluid moves through the annular region solely because of the rod motion.
(a) Find the velocity distribution in the narrow annular region.
(b) Find the mass rate of flow through the annular region.
(c) Obtain the viscous force acting on the rod over the length L.

Solve by using equation of change.

Q2. (a) Heat is flowing through an annular wall of inside radius r_{0} and outside radius r_{1}. The thermal conductivity varies linearly with temperature from k_{0} at T_{0} to k_{1} at T_{1}. Develop an expression for the heat flow through the wall.
(b) Show how the expression in (a) can be simplified when $\left(\mathrm{r}_{1}-\mathrm{r}_{0}\right) / \mathrm{r}_{0}$ is very small.(CO1)(4,3)

Q3. (a) Consider steady-state axial flow of an incompressible liquid in an annular region between two coaxial cylinders of radii κ R and R . The fluid is flowing upward in the tubethat is, in the direction opposed to gravity. Determine the momentum-flux and velocity distributions, maximum and average velocity, mass rate of flow and force exerted by the fluid on the solid surfaces.

(b) A horizontal annulus, 27 ft in length, has an inner radius of 0.495 in . and an outer radius of 1.1 in . A 60% aqueous solution of sucrose is to be pumped through the annulus at $20^{\circ} \mathrm{C}$. At this temperature the solution density is $80.3 \mathrm{lb} / \mathrm{ft}^{3}$ and the viscosity is $136.8 \mathrm{lb} / \mathrm{ft}$.hr. What is the volume flow rate when the impressed pressure difference is $5.39 \mathrm{psi} ?(\mathrm{CO} 2)$
\$3.6 EQUATION OF MOTION FOR A NEWTONIAN FLUID WITH CONSTANT ρ AND μ

$$
\begin{aligned}
& \mathrm{L}_{\rho} \mathrm{Dv} / \mathrm{Dt}=-\mathrm{V}_{p}+\mu \mathrm{V}^{2} v+\rho g I \\
& \text { Cartesian coentinaten (} x, y, z \text { z }
\end{aligned}
$$

Cylindrical coordinutes (r, e, a)

Spherical coovelinates (r, ϕ, ϕ) :

§8. 5 THE EQUATION OF MOTION IN TERMS OF T
$\left\lceil\rho \mathrm{Dv} / \mathrm{Dt}=-\mathrm{V}_{\mathrm{p}}-[\mathrm{V} \cdot \tau|+\rho \mathrm{g}|\right.$

$$
\begin{aligned}
& \text { Cartesian coordinater }(x, y, z))^{*}
\end{aligned}
$$

*These equations have been writien without maling the aswamption that 4 is symentaic. This masa, for example, that when the usual asaumption is made that the stress tensor ia symmetric, F_{g} and F_{n} may be Interchanged.

$$
\begin{aligned}
& \text { Cylindricol coondinates }(t, t, v)^{\text {t }}
\end{aligned}
$$

'Thewe equations haw been writien whenot maling the assumpeige that v is symmetric. This neans, for ecample, that when the wewal asaumprion is inade that the stress tensor is pymenetric, $t_{+}=\pi_{+}=0$.

```
Spherical eserdinetes ( \(f, 0, \phi)^{\prime}\)
```



```
    \(-\left[\frac{1}{2} \frac{\partial}{\partial r}\left(\theta^{2} r_{j}\right)+\frac{1}{r \sin \phi} \frac{\partial}{\partial \phi}\left(r_{*} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} r_{\psi}-\frac{r_{\omega}+r_{\omega}}{r}\right]+\mu\)
```


$$
\begin{equation*}
-\left[\frac{1}{3} \frac{\partial}{\partial r}\left(r^{r} r_{\mu}\right)+\frac{1}{r \sin \theta} \frac{\partial}{d \phi}\left(r_{e} \sin \theta+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} r_{e x}+\frac{\left(r_{e}-r_{e}\right)-r_{\omega t} \cot \theta}{r}\right)+\lambda_{2}\right. \tag{8,5-5}
\end{equation*}
$$

"These equations have been writhen witheot making the aspuaption that vis symmetric. This meana, for ecample, that when the usial asumption is ande that the atress tensor is symunetric, to $=t_{0}=0$.

