M. Sc. (Industrial Chemistry) First Semester First Perodical January 2021 Chemical Process Calculations

Time allowed: 1 hr Maximum Marks: 20

Note: Attempt all questions.

- 1. The spent acid from nitrating process contains 35% HNO₃, 35%H₂SO₄ and 30% water by weight. This acid is to be strengthened by the addition of 95% H₂SO₄ and 76% HNO₃. The final acid mixture is to contain 42% HNO₃ and 40% H₂SO₄. Calculate the amount of spent acid and the concentrated acid that should be mixed together to give 1000 kg of the desired mixed acid. (9)
- 2. a) A 0.5 molar aqueous solution of sulfuric acid flows into the process unit at a rate of $1.25 \text{m}^3/\text{min}$. The specific gravity of the solution is 1.03. Calculate (i) the mass concentration of H_2SO_4 in kg/m³, (ii) the mass flow rate of H_2SO_4 in kg/s and (iii) the mass fraction of H_2SO_4 .
- b) A natural gas has the following composition by volume:

 $\begin{array}{ccc} CH_4 & 94.1 \ \% \\ C_2H_6 & 3.0 \ \% \\ N_2 & 2.9 \ \% \end{array}$

The gas is piped from the well at the temperature of 26°C and an absolute pressure of 3.4 atm. It may be assumed that the ideal gas law is applicable.

Calculate:

- i. Partial pressure of the Nitrogen in kPa
- ii. Pure component volume of Nitrogen in m³ if the volume of gas is 100 ft³.
- iii. Density of the mixture in lb/ft³. (5,6)