M. Sc. (Industrial Chemistry) First Semester First Perodical January 2021
 Chemical Process Calculations

Time allowed: 1 hr
Maximum Marks: 20
Note: Attempt all questions.

1. The spent acid from nitrating process contains $35 \% \mathrm{HNO}_{3}, 35 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and 30% water by weight. This acid is to be strengthened by the addition of $95 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and $76 \% \mathrm{HNO}_{3}$. The final acid mixture is to contain $42 \% \mathrm{HNO}_{3}$ and $40 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. Calculate the amount of spent acid and the concentrated acid that should be mixed together to give 1000 kg of the desired mixed acid.
2. a) A 0.5 molar aqueous solution of sulfuric acid flows into the process unit at a rate of $1.25 \mathrm{~m}^{3} / \mathrm{min}$.The specific gravity of the solution is 1.03 . Calculate (i) the mass concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $\mathrm{kg} / \mathrm{m}^{3}$, (ii) the mass flow rate of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in kg / s and (iii) the mass fraction of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
b) A natural gas has the following composition by volume:

CH_{4}	94.1%
$\mathrm{C}_{2} \mathrm{H}_{6}$	3.0%
$\mathrm{~N}_{2}$	2.9%

The gas is piped from the well at the temperature of $26^{\circ} \mathrm{C}$ and an absolute pressure of 3.4 atm . It may be assumed that the ideal gas law is applicable.
Calculate:
i. Partial pressure of the Nitrogen in kPa
ii. Pure component volume of Nitrogen in m^{3} if the volume of gas is $100 \mathrm{ft}^{3}$.
iii. Density of the mixture in $\mathrm{lb} / \mathrm{ft}^{3}$.

