First Periodical, October, 2021 B.E. (Chemical), III^{rd} year, V^{th} sem. Chemical Reaction Engineering – I

M.M.: 25

Note:

- Please write your Class/Univ roll number, class and name at the top of all the pages/answer sheets and the graph.
- Attempt all questions.
- Scan all the pages/answer sheets and the graphs as a single pdf file and upload the same in the google form sent in the Google classroom. The Google form will stop taking responses at sharp 1.00 pm today i.e. 18.10.2021
- I. The decomposition of reactant A at 400°C for pressures between 1 and 10 atm follows a first order rate law. Show that a mechanism similar to azomethane decomposition is consistent with the observed kinetics. (5)
- II. For an irreversible trimolecular type third order reaction, $A + B \rightarrow R$, develop the rate equation when (a) $M \ne 1$ (b) M = 1The reaction is first order w.r.t A and second order w.r.t B (6)
- III. Reactant A decomposes in a batch reactor. The composition of A is measured at various times and the results are

19 Time, s 0 10 25 37 57 70 120 200 300 Conc. 16 14 12 10 8 6 5 3 2 1 mol/liter

(8)

Find the rate equation by using half life method.

IV. The thermal decomposition of hydrogen iodide $2HI \rightarrow H_2 + I_2$ is reported as :

T, °C	508	427	393	356	283	
k,	0.1059	0.0031	5.88×10^{-4}	80.9×10^{-6}	0.942×10^{-6}	(6)
cm ³ /mol.s						

Find the complete rate equation for this reaction. Use units of joules, moles, cm³ and seconds

OR

Gaseous reactant A decomposes as $A \rightarrow 3R$. Find the conversion of A in a 50%A-50% inert feed (v_0 = 180 liter/min, C_{A0} = 300 mmol/liter) to a 1m³ mixed flow reactor. Given that $-r_A$ = (0.6 min⁻¹) C_A