First Periodical, June 2021 M.E. (Chemical Engg), Ist year, 2nd sem. Process Modeling & Simulation

M.M.: 20 Time: 60 mins

Note:

- Mention your Univ. roll number, class and name at the top of all the pages/answer sheets.
- Scan all the pages/answer sheets as a single pdf file and upload the same in Google classroom.
- Attempt all questions.
- 1. Consider a spherical vessel with radius = 1 m, containing water initially (t=0) with liquid height of z = 1.5m. Water then starts to flow into the vessel with controlled flow rate of 2z (m³/h) (the inflow is function of liquid height). At the same time, water from the vessel is withdrawn at a constant rate of 2 m³/h. Develop suitable mathematical model to predict liquid height, z as a function of time, t. Using this model expression, compute the time it takes for the spherical tank to overflow. State clearly all your assumptions. (10)
- 2. Consider a process that contains two tanks in series. The feed stream to the first tank has volumetric flow rate F_i and temperature T_i . The first tank has temperature $T_1(t)$ and constant volume V_1 . This tank receives a heating input with rate = $Q = UA_h(Ts T_1)$. Where, Ts is the temperature of steam used for heating. A_H is the heat transfer area available for heat transfer. The outlet stream from the first tank is used as an inlet stream for the second tank. The second tank has temperature T_2 and variable volume V_2 . The outlet flow from this tank is described as : $F_2 = C_v h_2^{0.5}$, where h_2 is the liquid level in tank 2. Let A_2 be the cross sectional area of tank 2. Assuming $V_2/F_1 <<1$, derive the dynamic model describing the second tank level h_2 and temperature T_2

