First Periodical

B.E. (Chemical) $\mathbf{2}^{\text {nd }}$ Year

1. Derive the following using Maxwell's relations:

$$
\kappa_{S}=\kappa-\frac{V T \beta^{2}}{C_{P}}, \text { where } \kappa_{S}=-\left(\frac{1}{V}\right)\left(\frac{\partial V}{\partial P}\right)_{S}
$$

2. Steam enters an adiabatic turbine at 10 MPa and $400^{\circ} \mathrm{C}$ and leaves at 20 kPa with quality of 90%. Neglect the changes in kinetic and potential energies, determine the mass flow rate required for a power output of 5MW. (You can use online steam tables https://www.spiraxsarco.com/resources-and-design-tools/steam-tables/dry-saturated-steam-line)
3. Derive the expression for fugacity of n-butane following Vanderwaal's equation of state.
4. The coefficient of volumetric expansion of water at 373 K is $7.8 \times 10^{-4} \mathrm{~K}^{-1}$. Calculate the change in entropy when the pressure is increased from 1 bar to 100 bar. At 373 K , density of water is $958 \mathrm{~kg} / \mathrm{m}^{3}$. or
Helium gas obeys equation of state $P v=R T-\frac{a P}{T}+b P$ where $\mathrm{a}=386.7 \mathrm{Kcm}^{3} / \mathrm{gmol}$ and $\mathrm{b}=15.29$ $\mathrm{cm}^{3} / \mathrm{gmol}$. Estimate the change in entropy and enthalpy for the gas if it changes isothermally from a state 5 bars to 15 bars at 500 K
