2018-19

COURSE	Course outcomes
SEMESTER-I	SEMESTER-I
MATHEMATICS-I	CO1: To test the behavior of infinite series. Operate vectors and convert line
	integral to surface integral to volume integral.
	CO2: Analyze functions of several variables and their applications.
	CO3: Evaluate multiple integrals and apply them to practical problems.
	CO4: To study cylinders and cones and understand applying cylindrical and
DIODGANIG CHEMICEDY	polar coordinates. Formulate and solve linear differential equations.
INORGANIC CHEMISTRY	CO1: Understanding the basics of wave mechanics and chemical bonding in inorganic chemistry.
	CO2: Understanding the relation between structure and reactions of
	various complex compounds.
	CO3: Understanding the mechanism of various reaction and the ways to
	control them.
	CO4: Identifying the elements hazardous to nature and means to control
	them.
INORGANIC CHEMISTRY	CO1: getting hands on training in handling various equipment.
(PRACTICAL)	CO2: understanding practically all theoretical concepts
	CO3: working with discipline and as a team with co-operation.
ENGINEERING	CO1: Understand the use of different drawing tools, types of lines,
GRAPHICS	dimensioning rotation of planes and types of projections. CO2: Projection of points, lines and planes. Visualization of solid objects
	through projection of solids and assembly drawing.
	CO3: Understand the importance of development of surfaces, isometric
	projection and computer graphics.
COMPUTER	CO1: The student will demonstrate proficiency in C++ programming
PROGRAMMING	language.
	CO2: The student will be able to solve basic engineering computation
	problems using C++
COMPUTER	CO1: The students will be able to demonstrate proficiency in C++
PROGRAMMING	CO2: The student will become confident in solving any computation
(PRACTICAL)	problem using his programming skills.
INTRODUCTION TO	CO1: The student will recognise his/her role as an engineer in the society and the associated responsibility lying ahead. The budding engineers will
ENGINEERING & TECHNOLOGY	have a better understanding of professional ethics and importance of
TECHNOLOGI	team work in achieving the professional goals.
	CO2: The course will enable the students to analyze the local and global
	impact of engineering solutions and applications on individuals,
	organizations and hence its impact on society.
	CO3: It will enable the students to identify, formulate and solve chemical
	engineering problems using law of conservation of mass and
	engineering sciences.
	CO4: Students will be capable of representing and analysing the experimental
ETHICS AND SELF	process data that would be helpful in solving engineering problems. CO1: The students will become a better human being by being able to
AWARENESS	distinguish between right and wrong in both personal and professional
TWITTE LEGS	front.
	CO2: The students will be able to realize the importance of ethics, moral
	values, duties and self awareness.
	CO3: The students will be able to identify their strengths, weaknesses,
	opportunities & threats and work enthusiastically to transform
CEMECTED II	weaknesses into strengths and threats into opportunities
SEMESTER-II MATHEMATICS-II	SEMESTER-II CO1: Expand functions in terms of Fourier series and introduction of
WATHEWATICS-II	harmonic analysis.
	CO2: Formulate and solve various partial differential equations. Solve partial
	differential equations of engineering interest by the method of
	<u> </u>

COURSE Course outcomes	
separation of variables.	
CO3: Find Laplace transforms, inverse transforms and apply these to sol	ve
various differential equations.	
CO4: Evaluate complex integrals and apply these to various problems.	
APPLIED PHYSICS CONDENSED MATERIAL CO.: Understand Bragg's law and introduced to the principles of lase	rs,
CONDENSED MATTER) types of lasers and applications. CO2: Various terms related to properties of materials such as permeabili	4
polarization etc.	ιy,
CO3: Basic knowledge of structural properties, crystal structure and X r	av.
diffraction analysis.)
CO4: Basic knowledge of magnetic, superconducting, dielectric properties	of
materials.	
CO5: Knowledge of nanomaterials, nanotechnology and its application.	
APPLIED PHYSICS CO1: Proficiency in technical aspects of performing the experiments.	
CONDENSED MATTER) CO2: State various laws which they have studied through experiments.	
PRACTICAL CO3: Experimental data observations and analysis.	
CO4 Proficiency in designing scientific projects and reporting COMMUNICATION CO1: Gain proficiency in English language as medium for communication	in
SKILLS (ADVANCE) both professional and personal life	Ш
CO2: Increase in employment prospective of students by developi	ng
technical aspects of communication.	8
CO3: Personality development of students by thorough knowledge	of
effective and enhanced communication skills	
COMMUNICATION CO1: English Speaking skills of students will be enhanced.	
SKILLS (ADVANCE) CO2: Students will become self confident in handling both professional a	nd
PRACTICAL personal meetings/discussions.	
CO3: Students will be able to demonstrate improved technical writing skill	
CO4: Overall personality of students as well as their communication ski will be developed.	.118
ELECTRICAL AND CO1: The student will understand how various loads are connected	in
ELECTRONICS circuits and difference between single and three phase system.	
ENGINEERING CO2: The students will know the principles and working of different type	oes
of electrical machines used in industry	
CO3: The students will have the basic knowledge of digitalization a	nd
conversion of physical quantity to digital quantity.	_
CO1: The student will understand how various loads are connected circuits and difference between single and three phase system.	ın
CNGINEERING CO2: The students will know the principles and working of different types	of
PRACTICAL electrical machines used in industry.	01
CO3: The students will have the basic knowledge of digitalization a	nd
conversion of physical quantity to digital quantity.	
ENGINEERING CO1: Describe force system, construct force body diagrams and calculate t	he
MECHANICS rections necessary to ensure static equilibrium.	
CO2: Describe trusses and define friction, its types and laws of friction.	
CO3: Determine centre of gravity and moment of inertia.	
CO4: Describe and examine kinematics of rigid bodies, equations of moti and vibrations.	On
ENGINEERING CO1: Identify basic prototypes in the carpentry trade such as Lap joint, L	an
VORKSHOP Tee joint, Dove tail join, Bridle joint, and Mitre joint.	цρ
CO2: Recognize and differentiate between the use of arc welding and g	gas
welding in making different types of welding joints such as Lap joi	
Lap Tee joint, Edge joint, Butt joint and Corner joint.	
CO3: Describe the various fabrication processes in Machine shop, use	
machine tools and materials, introduction to working of lathe, shapp	
milling and drilling machines, power hacksaw, shearing machine a	nd
grinding wheel. CO4: Recognize the wiring techniques in link clip and casting and causi	ne
wiring of lights with switches in parallels, series and with 2 wa	VS

COURSE	Course outcomes
	board, testing a wiring installation for insulation resistance.
INTRODUCTION TO	CO1: To recognize major concepts of environmental sciences and
ENVIRONMENTAL	demonstrate in depth understanding of the environment.
SCIENCE	CO2: To make the students to understand the need and importance of
	protection of environment.
	CO3: To spread awareness regarding environmental issues and their impact
	on society.
SEMESTER-III	SEMESTER-III
PHYSICAL CHEMISTRY	CO1: The students will be able to derive and apply laws related to ideal and
	non- ideal solutions,
	CO2: will develop basic understanding of slow and fast reactions CO3: will be able to apply different adsorption models on various adsorption
	processes and develop an understanding of enzyme catalysis
	CO4: will be able to solve numerical based on faradays laws and will
	develop a deep understanding of electrochemical processes.
PHYSICAL CHEMISTRY	CO1: Getting hands on training in handling various equipment.
LAB.(PRACTICAL)	CO2: Understand practically all theoretical concepts.
	CO3: Working with discipline and as a team with co-operation.
FLUID FLOW	CO1 Define types of fluids, describe boundary layer, define turbulence and
	apply Basic Equations of Fluid Flow.
	CO2 Describe fluid statics, pressure and Forces on Submerged bodies,
	Flow of Incompressible Fluids, pipes and fittings, economic pipe
	diameter.
	CO3 Employ Dimensional analysis, describe Compressible flow and
	examine flow through nozzles.
	CO4 Classify Flow Measurement equipments, Classification and
	Performance of Pumps, Turbines, Compressors, and Blowers,
THE THE THE CANA	Selection and Specification, Net positive Suction Head.
FLUID FLOW	CO1: Verify Bernoulli's theorem.
(PRACTICAL)	CO2: Evaluate discharge coefficient for various flow measurement devices and understand their industrial applications.
	CO3: Identify various types of flow, valves and fittings and evaluate the
	frictional losses associated with them.
	CO4: Calibrate a given flow meter.
	CO5: Understand the characteristics of pumps.
	CO6: Verify $f=16/Re$ for laminar flow through a straight tube.
PROCESS PLANT	CO1: To convert units and dimensions and modify equations from one
MATERIAL AND ENERGY	system to another,
BALANCE	CO2: To integrate the data and formulate the material and energy balance
	problems,
	CO3: To apply material and energy balance in different chemical processes
	(with and without reactions), including problems involving recycle,
	bypass and purge streams, CO4: To use steam tables and psychrometric charts.
ENGINEERING	CO1: Demonstrate an understanding of crystal structure, Space lattice, Miller
MATERIALS	Indices
	CO2: Describe and analyse imperfections in atomic arrangement, explain
	diffusion phenomenon in solids and perform simple diffusion problems
	CO3: Describe and analyse binary phase diagrams, TTT diagrams,
	demonstrate an understanding of phase transformations
	CO4: Classify types of materials, describe properties of materials and
	application in engineering and corrosion.
STRENGTH OF	CO1: Identify various types of Stressers and Strains, define Hooke's law,
MATERIALS	modulus of dlasticity and modulus of rigidity, calculate stresses under
	impact loads and sudden applied loads under varying conditions.
	CO2: Apply the theory to solve numerical problems based on Shearing force,
	bending moment, types of load on beams, types of supports,
	Concentrated loads and uniformly distributed loads.
	CO3: Define different types of Struts and Columns, Explain Euler theory and

SE Course outcomes	COURSE Cours
its limitations, describe Rankine-Gordon formula and its applications	
to numerical problems.	
CO4: Describe Stresses and Strains in Thin Shells and in springs, Strain	CO4:
Energy and Theories of Elastic Failure and numerical problems.	DD OCEGG FOLLDMENT COL
	PROCESS EQUIPMENT CO1: DESIGN
CO2: Design of thin-walled vessels under internal as well as external	
pressure.	CG2.
CO3: Design of foundation, supports and various joints.	CO3:
	MATHEMATICS-III CO1:
theorem. Learn to solve difference equations with constant	
coefficients.	G02.
CO2: Find Z-transforms and inverse Z-transforms using various methods and apply these to solve difference equations.	CO2:
CO3: Apply the series solution method to solve Bessel and Legendre	CO3·
differential equations.	Cos.
CO4: Apply various probability distributions, test of significance for Large	CO4:
samples and their comparison and goodness of fit.	
	HEAT TRANSFER CO1:
transfer and to estimate heat transfer rates,	G02
CO2: To understand boiling and condensation phenomena CO3: To carryout thermal analysis of heat exchanger using LMTD and	
effectiveness method,	CO3.
CO4: To estimate steam economy, capacity of single and multiple-effect	CO4:
evaporators.	
CO5: To apply engineering judgment including an appreciation of cost and	CO5:
safety.	
transfer equipment and Unsteady state heat transfer in jacketed vessels. CO2: Correlation of instantaneous heat transfer coefficients with time study	(PRACTICAL)
deposition of scale on a heating surface & heat losses for insulated	CO2.
pipes. Study of double pipe heat exchanger and 1, 2 - shell and tube	
heat exchanger.	
CO3: Study and operation of long tube, forced circulation and multiple effect	CO3:
evaporators, Duhring plot for solutions involving nonvolatile solutes	
	ENGINEERING THERMODYNAMICS
problems.	THERMODINAMICS
CO2: Estimate the thermodynamic properties of pure substances, especially	CO2:
fluids. Knowledge of various PVT equations of state including	
Principle of corresponding states and heat capacities to evaluate	
thermodynamic properties of fluids.	G02
CO3: Explain the underline principles of phase equilibrium and evaluate the thermodynamic properties in two-component and multi-component	CO3:
systems systems	
CO4: To develop and ability to envisage intermolecular potential and excess	CO4:
property behaviour of multi-component systems	
CO5: Impart ability to apply the concepts of phase equilibrium to vapour	CO5:
liquid equilibrium (VLE), separation processes and chemical reaction equilibrium	
NIC CHEMISTRY CO1: Understand and explain the different nature and behaviour of organic	ORGANIC CHEMISTRY CO1:
compounds	
CO2: Understand the concept of stereochemistry	
CO3: Learn and identify organic reaction intermediate and explain the mechanism including the free radical substitution, electrophilic	CO3:
addition, electrophilic aromatic substitution and nucleophilic	l l

COURSE	Course outcomes
	CO4: Identify important organic reactions and their application for
	syntheses.
ORGANIC CHEMISTRY	CO1: Practise analytical skills and recognize various aspects of lab safety.
(PRACTICAL)	CO2: Learn and apply basic technique used in the organic laboratory for
	preparation ,purification, and identification of oganic compound. CO3: Outline the synthesis of Benzamide and Asprin, and carry out the
	purification and percentage yield of compound.
	CO4: Identify important functional groups by a study of their properties and
	reaction.
MECHANICAL	CO1: Understand and determine various properties of solids, specific surface
OPERATIONS	area, average particle sizes of particles in mixtures, sphericity and
	laws of crushing. Classification of SR equipments, power
	consumption of various machines, description and working of Size
	reduction equipments and their applications CO2: Understand various screening techniques and equipments, capacity
	and effectiveness of screens, standard screens
	CO3: Understand and apply knowledge of Filtration Processes, constant
	pressure and constant volume filtration and various filtration
	equipments, their types and applications
	CO4: Understanding and applying concepts of Flow around a single
	particle, drag force and drag coefficient, settling velocity of particles in
	a fluid, hindered and free settling of particles, thickening and gravity separation, types of settling devices.
	CO5: analyzing flow through a bed of particles, applications of fluidization
	& fluidized bed, conditions for fluidization, minimum fluidization
	velocity, types and applications of fluidization.
	CO6: Understand and applying concepts of Handling, Storage and
	Transportation of Solids, Agitation of liquids, axial flow impellers,
	radial flow impellers, design of agitators, velocity and power
MECHANICAL	consumption of agitated vessels, blending & mixing. CO1: Understand the grinding operation and evaluate critical speed of a ball
MECHANICAL OPERATIONS	mill.
(PRACTICAL)	CO2: Analyze particle size distribution and evaluate screen effectiveness.
	CO3: Understand pressure drop behavior for the flow of Newtonian fluid
	flowing though fixed and fluidized beds.
	CO4: Understand the process of filtration and apply the basic equations of
	filtration. CO5: Understand settling rate and behavior of particles falling in quiescent
	liquid.
COMPREHENSIVE VIVA	CO1: Demonstrate technical knowledge of theory and practical subjects
	taught during first to fourth semesters.
	CO2: Demonstration of professional aptitude, learning ability and
CELVECTED V	communication skills.
SEMESTER-V NUMERICAL METHODS	SEMESTER-V CO1: Learn evaluating error in calculations, use of numerical methods for
IN CHEMICAL	solving algebraic and transcendental equations and using various
ENGINEERING	methods to carry out numerical differentiation and numerical
	integration.
	CO2: Understanding the concept of Finite Differences and Learn to use this
	for Interpolation and Inverse Interpolation with equispaced and
	unequispaced data. Learn to use Least Square Curve Fitting Procedure.
	CO3: Solve numerically ordinary differential equations of First and Higher order/Simultaneous differential equations using different methods.
	CO4: To Find the solution of linear system of equations by Direct and
	Iterative methods. Learn to solve partial differential equations using
	Finite difference approximation method.
ENERGY TECHNOLOGY	CO1: Have knowledge of solid fuels, their analysis, cleaning methods,
	carbonization process and synthetic fuels from coal

COURSE	Course outcomes
	CO2: Have knowledge of liquid fuels and manufacturing processes of
	gaseous fuels
	CO3: Be able to describe various furnaces, draught and furnace atmosphere
	and solve combustion problems
	CO4: Have in-depth knowledge of various renewable sources of energy, their scope and technologies in use
CHEMICAL REACTION	CO1: To understand the mechanism of chemical kinetics for different types
ENGINEERING-I	of reactions.
	CO2: To design batch and flow reactors for single homogeneous reactions.
	CO3: To understand the factors affecting the conversion, yield and
	selectivity in multiple reactions.
CHEMICAL DEACTION	CO4: To understand the concepts of non-ideal reaction.
CHEMICAL REACTION	CO1: Describe the kinetics of a batch and semi batch and adiabatic batch
ENGINEERING-I LAB.	reactor CO2: To understand and demonstrate kinetics of CSTR and PFR
	CO3: Perform RTD studies in a CSTR
MASS TRANSFER – I	CO1: Classify mass transfer operations and laws of mass transfer.
	CO2: Evaluation of molecular diffusion in gases, liquids and solids.
	CO3: Discuss diffusion coefficient/Mass transfer coefficient, interphase mass
	transfer and estimation of number of stages.
	CO4: Evaluation of humidification operations, design of cooling tower and
	working of gas-liquid contacting equipments.
CHEMICAL	CO5: Analysis of drying and discuss the working of different types of dryers. CO1: Identify the application of basic chemistry concepts to process
TECHNOLOGY	industries like Chlor-Alkali Industry, Manufacture of soda ash and
(INORGANIC)	caustic soda and Sulphuric Acid.
(==:0==================================	CO2: Recognize current issues and trends in process industries with a Study
	of manufacture of Cement and Glass and identify the importance of
	safety, health, and the environment in process industries.
	CO3: Understanding the basic history and manufacture of industrial gases,
	and Manufacture of different types of paints and Course outcomes
	outline the guiding principles of quality in the process industries. CO4: Understanding the manufacture of various fertilizers and processes
	involved and recognize the safety aspects.
CHEMICAL	CO1: Experimental determination of NPK Values and micronutrients in
TECHNOLOGY	different fertilizers.
(INORGANIC) LAB.	CO2: Estimation of Mg, Ca, Fe in cement and Loss of ignition, silica and
	insolubles.
	CO3: To determine the %age of chlorine in given sample of bleaching
PROCESS PLANT DESIGN	powder. COL Design and enceifications of pines number fore and blowers
-I	CO1: Design and specifications of pipes, pumps, fans and blowers. CO2: Design and specifications Dor thickeners, dust chambers, cyclone
-1	separators and centrifuges.
	CO3: Design of agitated vessels, impellers and Conveyor system for solids.
CHEMICAL	CO1: Determination of solution of linear and non-linear algebraic and
ENGINEERING	transcendental equations using computer programs or MATLAB.
COMPUTATION LAB.	CO2: To carryout Numerical differentiation & integration using computer
(PRACTICAL)	programs.
	CO3: To find solution of Ordinary and partial differential equations using computer programs.
	CO4: Carryout Interpolation and least squares approximation using computer
	programs.
SEMESTER-VI	SEMESTER-VI
CHEMICAL REACTION	CO1: Describe Heterogeneous catalyses, catalytic specificity. Preparation
ENGINEERING-II	testing and characterisation of catalysts, catalyst poisoning and catalyst
	regeneration
	CO2: To understand and analyse the external and internal transport in
	catalytic reaction systems. CO3: Describe Fluid Solid catalytic reactions, reaction & diffusion within
	200. Describe Fluid Sond Catalytic Teactions, Teaction & unfusion within

COURSE	Course outcomes
	porous catalysts and effectiveness factors.
	CO4: Describe Fluid Solid non-catalytic reactors rate equations and their application to the design of reactors.
	CO5: Analysis of rate data design outline and selection of fixed bed, fluid
	bed and slurry reactions
MASS TRANSFER-II	CO1: To understand the concepts of mass transfer equilibria for vapour-
	liquid and to generate operating line for various mass transfer systems like absorption, distillation, liquid-liquid extraction. Leaching, adsorption and principles of crystallization.
	CO2: The students are able to comprehend the concepts of co current & counter current processes, cascades and concept of Ideal stage and stage efficiencies, continuous contact equipments, number of transfer units and height of a transfer unit (NTU & HTU) concepts, packed
	column for absorption, equipment for gas absorption CO3: The students will get acquaintance about McCabe—Thiele methods & Ponchon Savarit method to calculate the number of stages for
	distillation column and able to design the column. CO4: The students will be able to understand the working of different
	equipments used for various mass transfer operations such as leaching, crystallization, etc.
MASS TRANSFER II LAB.	CO1: Application of different mass transfer equipments, Determination of mass transfer coefficients for naphthalene-air system. To determine drying rate curves for different wet solids in a batch drier.
	CO2: Verification of Rayleigh's equation for differential distillation, Determination of flooding velocities in packed columns.
	CO3: Determination of HETP for packed distillation columns, flooding velocities in packed columns.
	CO4: Practice operation of a pilot sized distillation column under total reflux, Fractional approach to equilibrium for liquid-liquid extraction
	from single drop.
PROCESS DYNAMICS & CONTROL	CO1: Develop the output-input relationship in terms of transfer function for first and higher order systems and evaluate their response to various
	inputs. CO2: Analyse the stability characteristics of control systems and apply Root
	locus technique to evaluate control system's response. CO3: Understand the control system; various control configurationsalong
	with various controllers and their characteristics. CO4: Design the PID controllers using frequency response technique and
	understand the concepts of Bode plots. CO5: Understand closed loop transfer function, block diagram, transient
	response along with the basics of various advanced control techniques.
PROCESS DYNAMICS & CONTROL LAB.	CO1: To plot the response curve for a given input to a U-tube manometer and to determine the transfer function from the response
CONTROL LAB.	CO2: To study the dynamics of the given thermometer and compare the
	theoretical value of its time constant with the experimental value. CO3: Determine Experimentally characteristics of of control valves and
	liquid level measurement systems. CO4: Experimental studies on temperature and pressure control systems.
CHEMICAL	CO1: Identify the processes and the concepts involved in the Extraction and
TECHNOLOGY	refining of oils & fats, hydrogenation of oils and Manufacture of soap
(ORGANIC)	and detergents.
	CO2: Understand the various water treatment processes for desalination as well as Water softening; using Lime soda, Ion exchange methods
	CO3: Recognized the different Manufacturing processes of pulp, paper and sugar.
	CO4: Understand the manufacture of activated carbon and carbon technology, synthesis of nano particle by plasma process.
CHEMICAL	COI Ability to understand the significance of Acid Vaiue, Iodine Value and
TECHNOLOGY	Saponification Value.

COURSE	Course outcomes
(ORGANIC) LAB.	CO2 Ability to understand the concept of Reducing and Non Reducing
	sugars using (i) Pavys Method (ii) Fehlings Method and the
	difference between the two methods
	CO3 To identify the nature of soap by determining the free and combined
GEN ANGENED ANA	alkali,total fatty matter and moisture content
SEMESTER-VII	SEMESTER-VII
TRANSPORT PHENOMENA	CO1: Ability to understand the chemical and physical transport processes and their mechanism of heat, mass and momentum transfer analysis
THENOMENA	CO2: analyse any transport related problem mathematically and predict the
	physical behaviour of the process
	CO3: formulate problems along with appropriate boundary conditions and
	develop steady and time dependent solutions.
ENVIRONMENTAL	CO1: Describe principal air pollutants, their sources and effects.
ENGINEERING	CO2: Discuss atmospheric dispersion of air pollutants and estimate
	concentration of air pollutants. CO3: Demonstrate the construction, working and theory of equipments used
	for the control of air pollution.
	CO4: Classify water pollutants, their sources and effects and calculation of
	water quality parameters.
	CO5: Application and design of physical/ chemical/ biological treatment
	methods for small communities/municipal sewage/industrial water/ waste water treatment.
	CO6: Classify solid wastes, their sources, effects and methods of disposal of
	solid wastes.
ENVIRONMENTAL	CO1: Calculate BOD, COD, TSS & TDS of wastewater samples.
ENGINEERING LAB.	CO2: Determination of chromium separation, phenol content of water
	sample & To find the biodegradation constant (K) and the effect of
	timing on it
	CO3: Practice and apply electro dialysis apparatus and reverse osmosis set up for waste water analysis.
	CO4: To use stack monitoring kit to find: Efficiency of a cyclone & Dust
	sampling.
PROCESS MODELLING &	CO1: Describe fundamentals of modelling and simulation, formulate
SIMULATION	mathematical models and perform degree of freedom analysis.
	CO2: Derive the mathematical models for chemical engineering systems and solve them using any one of the softwares Polymath/C/C++/Matlab.
	CO3: Apply simulation to get the output for the models of heat exchangers,
	distillation columns, reactor and process equipment.
PROCESS PLANT DESIGN-	CO1: Design and specifications of double pipe heat exchanger, shell and
II	tube heat exchanger, plate type heat exchanger, condenser and reboiler.
	CO2: Design of distillation column, calculation of number of plates, height
	and design of fractionator internals- sieve tray.
	CO3: Design aspects of fixed bed reactors and fluidized bed reactors.
SEMESTER-VIII	SEMESTER-VIII
PROCESS	CO1: Classify elements and types of instruments, static and dynamic
INSTRUMENTATION	characteristics of instruments.
	CO2: Illustrate the different methods for the measurement of temperature
	and their useful applications.
	CO3: Elucidate the construction and working of various industrial devices used to measure pressure and vacuum.
	CO4: Explicate the construction and working of various industrial devices
	used to measure level.
	CO5: Discuss methods for measurement of viscosity, conductivity, humidity,
	density, weight and pH.
	CO6: Describe recording/indicating/signalling instruments and Control
	Centre. CO7: Construct Instrumentation diagrams.
PROCESS ENGINEERING	CO1: Formulate and apply interest factors to real life engineering problems
THE CLUB LINGINGING	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

COURSE	Course outcomes
ECONOMICS	CO2: Perform economic analysis for process to calculate equipment cost
	CO3: Develop and apply mathematical models describing real life cash flows
	and time value of money
	CO4: Evaluate engineering alternatives and profitability for process CO5: Perform breakeven analysis and optimum and plant design of a
	process.
PROJECT WORK	CO1: Apply the knowledge of chemical engineering and basic sciences to
	design or fabricate a system/unit/plant.
	CO2: Apply knowledge of chemical engineering to solve energy and
	material balance and design efficient process.
	CO3: Analyze the process components and perform the coat analysis and efficiency of the process.
COMPREHENSIVE VIVA	CO1: Demonstrate technical knowledge of theory and practical subjects
COMI REHENSIVE VIVA	taught during whole degree course.
	CO2: Demonstration of professional aptitude, learning ability and
	communication skills, originality and capacity for application of this
	profession to service of mankind.
	CO3: Strive for lifelong learning, exhibiting professionalism and ethical behaviour and service of the nation, discipline and society.
LITERATURE SURVEY,	CO1: Survey of scientific, technical and commercial literature in
REPORT WRITING &	engineering/technology and defining problem statement.
SEMINAR	CO2: Critical analysis and evaluation of literature
	CO3: Demonstrate effective public speaking and impromptu discussions
ODEN EL ECTIVES	CO4: Write technical report in a coherent and concise manner.
OPEN ELECTIVES FUEL CELL	Open Electives CO1: Knowledge and concept of fuel cell technology and various types.
TECHNOLOGY	CO2: Knowledge and concept of ruer cert technology and various types. CO2: Knowledge of thermodynamics, chemical reaction engineering,
	transport processes and electrochemical engineering perspectives.
	CO3: Knowledge of fuel cell modeling and characterization techniques.
	CO4: Knowledge of hydrogen energy, its generation and storage with safety
NANO TECHNOLOGY	issues CO1: Understand the basis of nanotechnology in terms of bonding, types of
NANO LECIMOLOGI	nanomaterials.
	CO2: Explain methods of synthesis and fabricating nanostructures (top
	down- bottom up).
	CO3: Relate the unique properties of nanomaterials to the reduced
	dimensionality of the material through characterisation. CO4: Discuss applications of nanomaterials in various fields.
POLYMER SCIENCE AND	CO1: Describe chemistry of polymers, classification of polymers, addition
ENGINEERING	and condensation polymersation, coplymerization, polymerization
	techniques.
	CO2: Characterization of polymers, concept of average molecular weight and
	types, polymer crystallinity, analysis of polymers using IR, XRD, DSC, DMTA, TGA etc techniques.
	CO3: Define Polymer compounding, different compounding ingredients for
	rubber and plastics, crosslinking and vulcanization.
	CO4: Applications of Polymer processing techniques, injection molding,
	blow molding, calendaring, rotational molding, thermoforming, rubber
OPERATIONS RESEARCH	processing etc. CO1: Define and apply Linear Programming methods, describe problem
OI ERATIONS RESEARCH	formulation, graphical method, simplex method, duality sensitivity
	analysis and Transportation model based problems.
	CO2: Describe Theory of Games, Algebraic, Graphical & Linear
	programming methods. Queuing Theory, elementary queuing system;
	single & multiple channel queuing model, , Poisson arrivals and Erlang
PROJECT MANAGEMENT	service distribution; benefits and limitations of queuing theory. CO1: To consider the legal and financial conditions for starting a business
AND	venture To evaluate the effectiveness of different entrepreneurial
ENTREPRENEURSHIP	strategies

COURSE	Course outcomes
	CO2: To understand the nature of entrepreneurship and functions of the
	successful entrepreneur. To identify personal attributes that enable
	best use of entrepreneurial opportunities
	CO3: Explain the concept and attributes of projects, project management
	system, process and its principles, and various stages of a project.
	Perform technical feasibility, marketing feasibility and commercial
	viability using NPV, and further to understand tax and legal aspects of
	a project.
	CO4: Analyse project appraisal in public & private sector and estimate
	shadow prices and social discount rate. Examine project risk and
	performance assessment. Evaluate project management techniques
	using case studies.
DEPARTMENTAL	DEPARTMENTAL ELECTIVE
ELECTIVE PROCESSING	
PETROLEUM PROCESSING	CO1: Define Origin, exploration & drilling of petroleum crude, Crude
ENGINEERING	pretreatment: Refining and distillation of petroleum crude,
	composition and classification of petroleum crude. CO2: Describe Properties and specifications of petroleum products such
	as LPG, gasoline, naphtha, kerosene, diesel, lubricating oils and
	waxes.
	waxes. CO3: Illustrate separation processes, Describe Solvent extraction
	processes and solvent dewaxing.
	CO4: Describe Conversion Processes, cracking and refining, alkylation,
	polymerization, isomerisation and hydroprocessing, Safety and
	pollution considerations in refineries.
PETROLEUM PROCESSING	CO1: Determine Flash point (Closed – cup) and smoke point for
ENGINEERING LAB.	kerosene, ASTM distillation curve for gasoline, diesel oil.
	CO2: Determine Aniline point, Diesel Index, pour point and cloud point
	and cetane number for diesel oil.
	CO3: Determine viscosity at different temperatures using Ostwald
	viscometer for hydrocarbon solvents, viscosity index of lubricating
	oilby Redwood viscometer.
	CO4: Determine water content in petroleum products by Dean and
	Starks method.
INDUSTRIAL SAFETY &	CO1: Identify the various types of hazards in work-place environment,
HAZARDS	protective and preventive measures in hazard control, Toxic
	Chemicals, maximum allowable concentrations and other standards.
	Biological threshold limit values.
	CO2: Recognize Mechanical and Electrical hazards, Explosives and inflammable substances, radioactive hazards
	CO3: Select appropriate Personal protective equipments and effective control
	strategies for Fire prevention. Good housekeeping in industrial
	environment.
	CO4: Understand Standard safety procedures and disaster control, OSHAS,
	OHSMS and OSHA. Current amendments in Indian Legislation on
	safety and prevention of hazards and safety code: ISO 14000,
	ISO9000.
	CO5: Describe Environmental impact assessment. Case studies of typical
	hazardous industries.
	CO6: Select proper control strategies for hazardous wastes.
PLANT UTILITIES	CO1: Understand the selection of different utilities to run process plant.
	CO2: Analyze the use of compressed air through air compressore and
	vacuum pumps.
	CO3: Analyse of use of steam and or boiler.
	CO4: To analyse the power generation through IC engines and turbines. CO5: Understand the importance refrigeration and water resources.
BIOCHEMICAL	CO1: Gaining knowledge about metabolic pathways and cell growth.
ENGINEERING	CO2: Understanding the concept of enzyme kinetics and their applications.
Z. OH IZZKII O	CO3: Designing and creating new processes and fermented products that are
	223. 223gming and creaming new processes and refinement products that are

COURSE	Course outcomes
	better economically and technologically. CO4: Understanding the basic calculations for heat and mass transfer and yield of product.